
Motion Detection

Creating test images

Helper functions
described later ...

loading images: identical scene, identical camera position ... but: images have been
created differently

The same scene has been captured with the HQ-camera module with different methods:

1) image has been captured directly into a file as a compressed image (jpeg)

2) image has been captured as array (ndarray object) and save to file as jpeg (using OpenCV)

3) image has been captured as array (ndarray object) and saved to file (no compression)

Images are then retrieved from file and stored in ndarray objects

It is shown that the shapes of all three images are identical.

In [1]: %matplotlib inline 
import cv2 
import numpy as np 
from matplotlib import pyplot as plt 
import time 
import pandoc 

In [2]: def tileImg(nrow, ncol, width, height): 
    n_row_step = height // nrow 
    n_col_step = width // ncol 
    tiles = [] 
 
    for m in range(nrow): 
        row_start = m * n_row_step 
        row_end = row_start + n_row_step - 1 
             
        for k in range(ncol): 
            col_start = k * n_col_step 
            col_end = col_start + n_col_step - 1 
            tiles.append([row_start, row_end, col_start, col_end]) 
    return tiles 
 
def imgDiffGtThr(img_th, tiles, percent=0.02): 
    # detecting interesting parts; those subimages of img_th where 
    # nr of pixels != 0 are above a threshold (given in percent) 
    # return tiles 
    tiles_exceeding_percent = [] 
 
    for row_start, row_end, col_start, col_end in tiles: 
        npixels = (row_end - row_start + 1) * (col_end - col_start + 1) 
        pc = cv2.countNonZero(img_th[row_start:row_end, col_start:col_end]) / npixels 
        if pc > percent: 
            tiles_exceeding_percent.append([(col_start, row_start), (col_end, row_end)]) 
    return tiles_exceeding_percent 



note:

OpenCV reads color channel in order {blue, green, red} ; reordering may be necessary to display image with
imshow of matplotlib which expects different color order: {red, green, blue})

height1: 1080; width1: 1920; channels1: 3 
height2: 1080; width2: 1920; channels2: 3 
height3: 1080; width3: 1920; channels3: 3 

Displaying images
Since we have 3 images taken from the same scene with unchanged camera position these images should
look identical. Later it is demonstrated that each image is slightly different depending on how it has been
captured and stored to a file.

In [3]: # 1) image has been captured directly into a file as a compressed image (jpeg) 
imgFile1 = "img/img_indentical/img_jpg_ex1.jpg" 
 
# 2) image has been captured as array (ndarray object) and save to file as jpeg (using Op
imgFile2 = "img/img_indentical/img_numpy_ex1.jpg" 
 
# 3) image has been captured as array (ndarray object) and saved to file (no compression
imgFile3 = "img/img_indentical/img_numpy_ex1.npy" 
 
# reindexing images read from opencv method : wanted color ordering: RGB 
img1 = cv2.imread(imgFile1)[:,:,[2, 1, 0]] 
img2 = cv2.imread(imgFile2)[:,:,[2, 1, 0]] 
 
# no bgr to RGB ordering required -> image has been captured as array in RGB order and s
img3 = np.load(imgFile3) 
 
# showing that images have identical shapes (height, width, nr of colors-channels) 
height1, width1, channels1 = img1.shape 
height2, width2, channels2 = img2.shape 
height3, width3, channels3 = img3.shape 
print(f"height1: {height1}; width1: {width1}; channels1: {channels1}") 
print(f"height2: {height2}; width2: {width2}; channels2: {channels2}") 
print(f"height3: {height3}; width3: {width3}; channels3: {channels3}") 

In [4]: fig1 = plt.figure(1, figsize=[18, 6]) 
ax_f1 = fig1.add_subplot(1, 3, 1) 
ax_f1.imshow(img1) 
ax_f1.set_title('direct capture to jpg') 
ax_f1.axis('off') 
 
ax_f2 = fig1.add_subplot(1, 3, 2) 
ax_f2.imshow(img2) 
ax_f2.set_title('array capture stored as jpg') 
ax_f2.axis('off') 
 
ax_f3 = fig1.add_subplot(1, 3, 3) 
ax_f3.imshow(img3) 
ax_f3.set_title('captured and save as array') 
ax_f3.axis('off'); 
 
# saving to file 
fig1_file_name = "img/img_indentical/fig1.jpg" 
fig1.savefig(fig1_file_name, dpi=150) 



Why images are still different
An image captured to a ndarray and saved to file using numpy.save() method is a "lossless" representation
of the captured image since it has not been compressed before saving it. On a per pixel basis such image
must be different to images which have been captured and compressed before storing them.

But even for two images which have been captured in a compressed format (see method 2 and 3) small
differences should be expected. (method 2 used OpenCV to compress to jpeg while method 3 used the
built-in codec of the camera)

And if we had captured two consecutive images in a lossless format (numpy) these images would be slightly
different due to the additive noise added by the camera's sensor during capturing these images.

When deciding whether images are identical (almost identical) or significantly different, the effect of noise in
images must be taken into account.

How to compare images which are almost identical but noisy
step 1)

from the original images img1, img2, img3 obtain blurred versions of images. Here we apply gaussian
blurring. Note: Convert to gray scale images before blurring.

step 2)

take absolute difference images. Since we have 3 images there 3 image pairs to consider when taken
absolute differences:

img1_2 := absdiff of images (img1_blur, img2_blur)

img1_3 := absdiff of images (img1_blur, img3_blur)

img2_3 := absdiff of images (img2_blur, img2_blur

step 3)

apply binary thresholding to absdiff images img1_2, img1_3, img2_3; set every pixel to 0 if absdiff is below
threshold. Otherwise set to maximum (255). As a result we get thresholded images:

img1_2_th, img1_3_th, img2_3_th

In [5]: threshold = 20 
 
# blurring after converting to gray scale images 
img1_blur = cv2.GaussianBlur(src=cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY), ksize=(5, 5), s
img2_blur = cv2.GaussianBlur(src=cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY), ksize=(5, 5), s
img3_blur = cv2.GaussianBlur(src=cv2.cvtColor(img3, cv2.COLOR_BGR2GRAY), ksize=(5, 5), s



Show thresholded images
Since original images have been almost identical, blurred and then thresholded images are mostly black (0).
Only a few speckles of white (255) occur.

1) counting the number of non-zero pixels for each thresholded image

2) taking the ratio of non-zero pixels to the total number of pixels of the images

3) the ratio (nr of non-zero pixels/total nr of pixels) indicates a low percentage of pixels is different from 0.
This fact could be used as a coarse measure of similarity of images

 
# absdiff of gray scale images 
img1_2 = cv2.absdiff(img1_blur, img2_blur) 
img1_3 = cv2.absdiff(img1_blur, img3_blur) 
img2_3 = cv2.absdiff(img2_blur, img3_blur) 
 
# thresholding 
img1_2_th = cv2.threshold(src=img1_2, thresh=threshold, maxval=255, type=cv2.THRESH_BINA
img1_3_th = cv2.threshold(src=img1_3, thresh=threshold, maxval=255, type=cv2.THRESH_BINA
img2_3_th = cv2.threshold(src=img2_3, thresh=threshold, maxval=255, type=cv2.THRESH_BINA

In [6]: fig2 = plt.figure(2, figsize=[18, 6]) 
ax_f2_1 = fig2.add_subplot(1, 3, 1) 
ax_f2_1.imshow(img1_2_th, cmap='gray') 
ax_f2_1.set_title('img1_2_th') 
ax_f2_1.axis('off') 
 
ax_f2_2 = fig2.add_subplot(1, 3, 2) 
ax_f2_2.imshow(img1_3_th, cmap='gray') 
ax_f2_2.set_title('img1_3_th') 
ax_f2_2.axis('off') 
 
ax_f2_3 = fig2.add_subplot(1, 3, 3) 
ax_f2_3.imshow(img2_3_th, cmap='gray') 
ax_f2_3.set_title('img2_3_th') 
ax_f2_3.axis('off'); 
 
# saving to file 
fig2_file_name = "img/img_indentical/fig2.jpg" 
fig2.savefig(fig2_file_name, dpi=150) 

In [7]: count_non_zero_1_2 = np.sum(img1_2_th == 255) 
count_non_zero_1_3 = np.sum(img1_3_th == 255) 
count_non_zero_2_3 = np.sum(img2_3_th == 255) 
ratio_1_2 = 100 * count_non_zero_1_2 / img1_2_th.size 
ratio_1_3 = 100 * count_non_zero_1_3 / img1_3_th.size 
ratio_2_3 = 100 * count_non_zero_2_3 / img2_3_th.size 
 
print(f"count_non_zero_1_2: {count_non_zero_1_2} ; ratio: {ratio_1_2:8.4f} %") 
print(f"count_non_zero_1_3: {count_non_zero_1_3} ; ratio: {ratio_1_3:8.4f} %") 
print(f"count_non_zero_2_3: {count_non_zero_1_2} ; ratio: {ratio_2_3:8.4f} %") 



count_non_zero_1_2: 127 ; ratio:   0.0061 % 
count_non_zero_1_3: 819 ; ratio:   0.0395 % 
count_non_zero_2_3: 127 ; ratio:   0.0094 % 

Another Example
The first image is the original image. The second image has been obtained by modifying the original image.

-> A square blue patch has been added to the image

Obtain images img4 and img5 from file, and change color order from BGR to RGB by reindexing.

Make a compy of img4 -> img4_with_tiles ; will be used later to superimpose rectangle where image is
different from the original image img4

To compare images img4, img5 convert to gray scale images first, then apply gaussian blurring, create an
image of absolute differences, apply thresholding.

img4_5_th is the image after thresholding has been applied.

Create Tiles
img4_5_th is partitioned into tile which define the boundaries of subimages

A total number of nrow * ncol tiles / subimages will be used

Iterating over each tile the count of non-zero pixels is detected. If the ratio of (count non-zero pixels/count
pixels of tile) exceed a threshold, the coordinates of the tile is appended to list tiles_exceeding_percent.

Each tile where the percentage is exceed is marked by yellow rectangle in the image; this helps to see where
changes between two images occurred.

note:

Helper function tileImg() creates a list of tiles

Helper function imgDiffGtThr() returns a list of tiles where the subimage shows significant changes.

In [8]: imgFile4 = "img/cistern_caffee.jpg" 
imgFile5 = "img/cistern_caffee_blue_patch.jpg" 
 
img4 = cv2.imread(imgFile4)[:,:,[2,1,0]] 
img4_with_tiles = img4.copy() 
img5 = cv2.imread(imgFile5)[:,:,[2,1,0]] 
 
# blurred and converted to gray scale 
img4_blur = cv2.GaussianBlur(src=cv2.cvtColor(img4, cv2.COLOR_BGR2GRAY), ksize=(5, 5), s
img5_blur = cv2.GaussianBlur(src=cv2.cvtColor(img5, cv2.COLOR_BGR2GRAY), ksize=(5, 5), s
 
# absdiff of gray scale images 
img4_5 = cv2.absdiff(img4_blur, img5_blur) 
 
# thresholding 
img4_5_th = cv2.threshold(src=img4_5, thresh=threshold, maxval=255, type=cv2.THRESH_BINA

In [9]: # creates tiles (10 rows, 10 colums: -> 100 tiles or subimages) 
width, height = img4_5_th.shape 



[[(1552, 777), (1745, 1035)]] 

Mark parts of image
The yellow rectangle marks where the two images are different (due to the blue patch ...)

nrow = 10 
ncol = 10 
tiles = tileImg(nrow, ncol, width, height) 
 
# detect tiles where percentage of non-zero pixels exceeds threshold 
tiles_exceeding_percent = imgDiffGtThr(img4_5_th, tiles, percent=0.02) 
print(f"{tiles_exceeding_percent}") 

In [10]: for upper_left, lower_right in tiles_exceeding_percent: 
    # add a yellow rectangle where percentage is exceeded 
    cv2.rectangle(img4_with_tiles, upper_left, lower_right, (255, 255, 0), 15) 

In [11]: fig3 = plt.figure(3, figsize=[14, 12]) 
# original image 
ax_f3_1 = fig3.add_subplot(2, 2, 1) 
ax_f3_1.imshow(img4) 
ax_f3_1.set_title('original') 
ax_f3_1.axis('off') 
 
# original image modified with blue patch 
ax_f3_2 = fig3.add_subplot(2, 2, 2) 
ax_f3_2.imshow(img5) 
ax_f3_2.set_title('original + blue patch') 
ax_f3_2.axis('off') 
 
ax_f3_3 = fig3.add_subplot(2, 2, 3) 
ax_f3_3.imshow(img4_5_th, cmap='gray') 
ax_f3_3.set_title('absdiff & thresholding') 
ax_f3_3.axis('off') 
 
ax_f3_4 = fig3.add_subplot(2, 2, 4) 
ax_f3_4.imshow(img4_with_tiles) 
ax_f3_4.set_title('original with tiles') 
ax_f3_4.axis('off'); 
 
# saving to file 
fig3_file_name = "img/img_indentical/fig3.jpg" 
fig3.savefig(fig3_file_name, dpi=150) 



Create Tiles etc.

In [12]: imgFile6 = "img/img_different/img_jpg_ex1_3.jpg" 
imgFile7 = "img/img_different/img_jpg_ex1_4.jpg" 
 
img6 = cv2.imread(imgFile6)[:,:,[2,1,0]] 
img6_with_tiles = img6.copy() 
img7 = cv2.imread(imgFile7)[:,:,[2,1,0]] 
 
# blurred and converted to gray scale 
img6_blur = cv2.GaussianBlur(src=cv2.cvtColor(img6, cv2.COLOR_BGR2GRAY), ksize=(5, 5), s
img7_blur = cv2.GaussianBlur(src=cv2.cvtColor(img7, cv2.COLOR_BGR2GRAY), ksize=(5, 5), s
 
# absdiff of gray scale images 
img6_7 = cv2.absdiff(img6_blur, img7_blur) 
 
# thresholding 
img6_7_th = cv2.threshold(src=img6_7, thresh=30, maxval=255, type=cv2.THRESH_BINARY)[1] 

In [13]: height, width = img6_7_th.shape 
nrow = 10 
ncol = 10 
 
# the tiles 
tiles = tileImg(nrow, ncol, width, height) 
 
# detect tiles where percentage of non-zero pixels exceeds threshold 



[[(1728, 864), (1919, 971)]] 

tiles_exceeding_percent = imgDiffGtThr(img6_7_th, tiles, percent=0.02) 
print(f"{tiles_exceeding_percent}") 

In [14]: for upper_left, lower_right in tiles_exceeding_percent: 
    # add a yellow rectangle where percentage is exceeded 
    cv2.rectangle(img6_with_tiles, upper_left, lower_right, (255, 255, 0), 10) 

In [15]: fig4 = plt.figure(4, figsize=[14, 12]) 
# original image 
ax_f4_1 = fig4.add_subplot(2, 2, 1) 
ax_f4_1.imshow(img6) 
ax_f4_1.set_title('original') 
ax_f4_1.axis('off') 
 
# original image modified with blue patch 
ax_f4_2 = fig4.add_subplot(2, 2, 2) 
ax_f4_2.imshow(img7) 
ax_f4_2.set_title('missing car (lower right)') 
ax_f4_2.axis('off') 
 
ax_f4_3 = fig4.add_subplot(2, 2, 3) 
ax_f4_3.imshow(img6_7_th, cmap='gray') 
ax_f4_3.set_title('absdiff & thresholding') 
ax_f4_3.axis('off') 
 
ax_f4_4 = fig4.add_subplot(2, 2, 4) 
ax_f4_4.imshow(img6_with_tiles) 
ax_f4_4.set_title('original with tiles') 
ax_f4_4.axis('off'); 
 
# saving to file 
fig4_file_name = "img/img_indentical/fig4.jpg" 
fig4.savefig(fig4_file_name, dpi=150) 



In [ ]:   


