
Computing the Projection(s) of an Image
This notebook reviews some methods to compute the projections of a 2D image. The
concept is explained by the figure below.

The figure is bounded by a rectangular region which is bounded by , , and (left,
top, right, bottom).

The line (projection line) intersects the figure at points and . Integrating over the
figure along this line yields the projection for this particular projection line.

While there are quite a few ways to define the projection line a frequently use approach is to
express the line by a vector equation like this:

With this formulation of the projection line the projection is computed via the
integral

Note

With projections for many values pairs (also referred to as Radon transform) it is
possible to reconstruct the image.

xl yu xu yl

x1, y1 x2, y2

→v = (x

y
) = d ⋅ (cos (θ)

sin (θ)
)

→d

+ t ⋅ (−sin (θ)

cos (θ)
)

→n

P (d, θ)

P (d, θ) = ∫
t2

t1

f (d ⋅ cos (θ) − t ⋅ sin (θ) , d ⋅ sin (θ) + t ⋅ cos (θ)) ⋅ dt

P (d, θ) d, θ

For a point the values of and are determined for a given angle .

The last equation is used to determine the integration limits and .

Computing Intersections
To compute the projection along a line defined by parameters and we need to compute
the intersection points and .

If the line intersects with the rectangle, an intersection may occur for these cases:

case#1 (left)

intersection occurs on the left side of the rectangle for and a specific value in the
range .

with :

If is in the interval then we have an intersection.

case#2 (right)

intersection occurs on the right side of the rectangle for and a specific value in the
range .

with :

If is in the interval then we have an intersection.

xp, yp d t θ

d = xp ⋅ cos (θ) + yp ⋅ sin (θ)

t = −xp ⋅ sin (θ) + yp ⋅ cos (θ)

t1 t2

t1 = −x1 ⋅ sin (θ) + y1 ⋅ cos (θ)

t2 = −x2 ⋅ sin (θ) + y2 ⋅ cos (θ)

d θ

x1, y1 x2, y2

x = xl y

yl ≤ y ≤ yu

xl = d ⋅ cos (θ) − tc1 ⋅ sin (θ)

tc1

tc1 =
d ⋅ cos (θ) − xl

sin (θ)

y = d ⋅ sin (θ) + tc1 ⋅ cos (θ)

y yl ≤ y ≤ yu

x = xu y

yl ≤ y ≤ yu

xu = d ⋅ cos (θ) − tc2 ⋅ sin (θ)

tc2

tc2 =
d ⋅ cos (θ) − xu

sin (θ)

y = d ⋅ sin (θ) + tc2 ⋅ cos (θ)

y yl ≤ y ≤ yu

case#3 (top)

intersection occurs on the top side of the rectangle for and a specific value in the
range .

with :

If is in the interval we have an intersection.

case#4 (bottom)

intersection occurs on the bottom side of the rectangle for and a specific value in
the range .

with :

If is in the interval we have an intersection.

Special cases are and .

case#5: (vertical projection line)

For in intersections occur at points and .

case#6: (horizontal projection line)

For in intersections occur at points and .

Example
The code to compute intersections is in Python file intersections.py .

For a pair of values the procedure checks for the conditions formulated for cases #1 to
#6. Either no intersection can be found of two intersections can be found.

y = yu x

xl ≤ x ≤ xu

yu = d ⋅ sin (θ) + tc3 ⋅ cos (θ)

tc3

tc3 =
yu − d ⋅ sin (θ)

cos (θ)

x = d ⋅ cos (θ) − tc3 ⋅ sin (θ)

x xl ≤ x ≤ xu

y = yl x

xl ≤ x ≤ xu

yl = d ⋅ sin (θ) + tc4 ⋅ cos (θ)

tc4

tc4 =
yl − d ⋅ sin (θ)

cos (θ)

x = d ⋅ cos (θ) − tc4 ⋅ sin (θ)

x xl ≤ x ≤ xu

θ = 0 θ = π

2

θ = 0

x xl ≤ x ≤ xu x, yl x, yu

θ = π

2

y yl ≤ y ≤ yu xl, y xu, y

d, θ

To demonstrate the application of function intersections.py a rectangle is defined with
corners at , , and

. (The image is represented in a physical coordinate system (x,y) as
opposed to image coordinates which are frequently used in the representation of discrete /
digital images (eg. captured from a digital camera).

The rectangle is displayed along with the intersections and the projection line which
interconnects the intersections.

#%matplotlib inline
import sys, os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as pat
import math
sys.path.append(os.path.join(os.getcwd(), 'modules'))
import intersections as isec
import cv2

the rectangular region
x_l = -5
x_u = 4.0
y_l = -6.0
y_u = 7.0

line parameters
d = 4.5
theta_deg = 171.0
dx = d * math.cos(math.radians(theta_deg))
dy = d * math.sin(math.radians(theta_deg))

compute intersections if there are any ...
pCount, iPoints = isec.intersections(d, theta_deg, x_l, x_u, y_l, y_u)
print(f"pCount : {pCount}")
print(f"iPoints : {iPoints}")

pCount : 2
iPoints : [[-5, -2.802718076626738], [-3.4474019837742578, 7.0]]

if pCount == 2:
 # tuple (x1, x2)
 xvec = [iPoints[0][0], iPoints[1][0]]
 # tuple (y1, y2)
 yvec = [iPoints[0][1], iPoints[1][1]]
 # integration limits (t1, t2)
 t1 = -xvec[0] * math.sin(math.radians(theta_deg)) + yvec[0] * math.cos(math.rad
 t2 = -xvec[1] * math.sin(math.radians(theta_deg)) + yvec[1] * math.cos(math.rad
 delta_x = abs(xvec[0] - xvec[1])
 delta_y = abs(yvec[0] - yvec[1])
 len_projection = math.sqrt(delta_x**2 + delta_y**2)
 # len_projection should be (t2 - t1)
 print(f"t1: {t1}, t2: {t2}, t2 - t1: {t2-t1} , len_projection: {len_projection

(xl = −5, yl = −6) (xl = −5, yu = 7) (xu = 4, yl = −6)

(xu = 4, yu = 7)

In [23]:

In [24]:

In [25]:

In [26]:

t1: 3.5503842914606136, t2: -6.374525899055607, t2 - t1: -9.92491019051622 , len_pr
ojection: 9.92491019051622

Display Intersection (if available)
1. The figure below shows the rectangle bounded by a blue boundary.

2. Vector is shown as a red arrow.

3. The part of the intersecting line which is within the rectangle is displayed in green.

4. Green dots indicate the intersection points and

fig1 = plt.figure(1, figsize=[8, 8])
ax_f1 = fig1.add_subplot(1, 1, 1)
ax = plt.gca()
ax_f1.add_patch(pat.Rectangle((x_l, y_l), width=(x_u - x_l), height=(y_u - y_l), e
ax_f1.legend()

plot arrow
ax_f1.arrow(0, 0, dx, dy, color='r', length_includes_head=True, head_width=0.2)

plot intersecting line
if pCount == 2:
 ax_f1.plot(xvec, yvec, color='g', linewidth=0.5, marker='o', markersize=3)

ax_f1.axis('equal')
ax_f1.grid(True)
ax_f1.set_xlabel('x')
ax_f1.set_ylabel('y')
ax_f1.set_title('rectangle with intersecting points');
ax_f1.set_xlim(x_l - 1, x_u + 1)
ax_f1.set_ylim(y_l - 1, y_u + 1);

→d

x1, y1 x2, y2

In [27]:

Computing the Projection for a discrete Image
The definition of a projection along a line has been defined for a continous function
/ image .

Now we discuss the case where the image is defined for discrete points on a
rectangular grid with rows and columns. Thus the image has a total of
points.

P (d, θ)

f(x, y)

f(x, y)

Ny Nx Ny ⋅ Nx

Here we are using physical coordinates for the discrete image points . If images
are loaded from a file the image points are represented in a image coordinate system. Then
an image is represented in matrix notation (row, col)-order with the upper left corner of the
image at .

Definition of a Projection
Being able to compute the intersection points we can now compute the projection of an
image along a straight line defined by parameters . A discretized image will be assumed.
With pixel in y-direction and pixels in x direction the image boundaries are as
follows:

1. left border: and

2. top / upper border: and

3. right border: and

4. bottom border: and

The procedure to compute a projection is outlined here:

1. for parameters , compute whether the line intersects the figure. If an intersection
occurs return the number of intersections (must be 2 of course) and the intersection
points and . If there is no intersection return the number of intersections as

f(nx,ny)

f(0, 0)

d, θ

Ny Nx

xl = 0 0 ≤ y ≤ Ny − 1

yu = Ny − 1 0 ≤ x ≤ Nx − 1

xu = Nx − 1 0 ≤ y ≤ Ny − 1

yl = 0 0 ≤ x ≤ Nx − 1

d, θ

x1, y1 x2, y2

0 and the intersection points as None values. Function intersections.py conputes
the intersection points.

2. If intersection points and have been found, collect the row / column
indices along the projection line which interconnects the intersection points. Function
projectionIndices computes the row / column indices of a projection line.

3. Summing up all pixel values of the image along the projection line yields the value of
the projection. The row / column indices computed from function
projectionIndices are used to select the pixels pertaining to the projection line.

Function projectionSingleLine computes the value of the projection using
functions intersections.py and projectionIndices

Two figures illustrate the procedure of collecting the appropriate row / column indices along
a projection line.

The first figure shows a case, where y coordinate changes by larger amount than the x
coordinate when moving along the projection line from pixel to pixel. A second figure shows
the opposite situation. Here the x coordinate changes by a larger amount than y when
moving from pixel to pixel.

No interpolation of pixel values is used to keep computations simple.

x1, y1 x2, y2

Application to an Image
The use of functions intersections(...) and projectionIndices(...) shall be
demonstrated using a simple image. The image is computed in Jupyter notebook
test_images_rd1.ipynb and stored in file.

1. Load image from file

2. compute intersections for a set of and .

3. plot intersections using function intersections(...)

4. plot the line connection the intersection points

5. plot the projection line computed from function projectionIndices(...)

Loading file
1. Determine the shape of image data Nx number of columns and Ny the number of

rows

2. Define the rectangular region which encloses the image

A. the rectangular boudaries of the image are determines by 4 points:

d θ

a. lower left corner: (x_l, y_l)

b. upper left corner (x_l, y_u)

c. lower right corner: (x_u, y_l)

d. upper right corner: (x_u, y_u)

Note

At this point no image coordinates are used. (image coordinates have the upper left corner
at (0,0))

load file
imgFile = "images/testImgRect1.npy"
img = np.load(imgFile)
Nx = img.shape[1]
Ny = img.shape[0]
print(f"size of image: {img.size} ; shape of image: {img.shape}")

size of image: 1800000 ; shape of image: (1000, 1800)

Define boundaries of the rectangular region
x_l = 0 # left x
x_u = Nx - 1 # right x
y_l = 0 # bottom y
y_u = Ny - 1 # top y

Compute a projection line
Recipe

1. For fixed parameters and the intersecting points (if there are any) of the the
projection line are determined

2. The projection line is defined by an array of x-Indices indexX an an array of y-Indices
indexY

line parameters
d = 1000
phi_deg = 40.0

compute intersections
pCount, iPoints = isec.intersections(d, phi_deg, x_l, x_u, y_l, y_u)

if len(iPoints) == 2:
 # intersection
 x1 = iPoints[0][0]
 y1 = iPoints[0][1]
 x2 = iPoints[1][0]
 y2 = iPoints[1][1]
 indexX, indexY = isec.projectionIndices(iPoints, Nx, Ny)

In [28]:

In [29]:

d θ

In [30]:

 dx = x2 - x1
 dy = y2 - y1
 if dx != 0:
 slope = dy/dx
 else:
 slope = math.nan

 print(f"slope : {slope}")
 print(f"pCount : {pCount}")
 print(f"iPoints : {iPoints}")
 print(f"dx : {dx} ; dy : {dy}")

slope : -1.1917535925942102
pCount : 2
iPoints : [[467.1467577861758, 999], [1305.4072893322784, 0]]
dx : 838.2605315461026 ; dy : -999

Applying corrections for image coordinates
The image is displayed in image coordinates with x=0 y=0 being the upper left corner of the
image. However the intersection points and indices of the projection line have been
computed in physical x/y coordinates. Before plotting the intersection points and the
projection line the physical coordinates must be transformed to image coordinates.

The transformation only affects the physicaly coordinate. It is is flipped up / down using Ny
-1 - (physical_Y_coordinates)

The figure below shows an excellent match of both variants of projection lines.

fig2 = plt.figure(2, figsize=[8, 8])
ax_f2 = fig2.add_subplot(1, 1, 1)

plot of image
ax_f2.imshow(img, cmap='Greys')
ax_f2.axis('equal')
plot projection line from intersections, the y coordinates must be transformed to
ax_f2.plot([x1, x2], [Ny - 1 - y1, Ny - 1 - y2], linewidth=2, color='#f5a142', labe
plot projection line from indices indexX and indexY; again y coordinates must be
ax_f2.plot(indexX, Ny -1 - indexY, linewidth=1, color='g', linestyle=':', label='pr
ax_f2.grid(True)
ax_f2.set_xlabel('x')
ax_f2.set_ylabel('y')
ax_f2.legend()
ax_f2.set_title('test image / projection from intersections / indices');

In [31]:

Computing Projections
1. define a fixed angle for which projections shall be computed

2. define an array of d-values

3. for each d-value compute a projection line and the accumulated value along that line

4. display the image and the projection lines

5. display the projection as a function of d-values for a constant angle .

the rectangular region
x_l = 0
x_u = Nx - 1

θ

θ

In [32]:

y_l = 0
y_u = Ny - 1

line parameters
d_min = -2000
d_max = 2000
Nd = 200
array of d-values
dVec = np.linspace(d_min, d_max, Nd)
fixed angle
theta_deg = 30.0

compute projection for elements of dVec and fixed angle theta_deg
projections = isec.projectionMultiLine(dVec, theta_deg, img, x_l, x_u, y_l, y_u, Nx

fig3 = plt.figure(3, figsize=[10, 10])
ax_f31 = fig3.add_subplot(2, 1, 1)
ax_f31.imshow(img, cmap='Greys')

ax_f31.axis('equal')

unit d-vector (dx, dy)
dx = math.cos(math.radians(theta_deg))
dy = math.sin(math.radians(theta_deg))
unit n-vector (nx, ny)
nx = -math.sin(math.radians(theta_deg))
ny = math.cos(math.radians(theta_deg))

projection lines
d_xmax = d_max * dx
d_y_xmax = d_max * dy
d_xmin = d_min * dx
d_y_xmin = d_min * dy

if d_max > 0:
 ax_f31.plot([0, d_xmax], [Ny - 1, Ny - 1 - d_y_xmax], linewidth=1, color='c', l
else:
 ax_f31.plot([0, d_xmax], [Ny - 1, Ny - 1 - d_y_xmax], linewidth=1, color='r', l

if d_min > 0:
 ax_f31.plot([0, d_xmin], [Ny - 1, Ny - 1 - d_y_xmin], linewidth=1, color='c', l
else:
 ax_f31.plot([0, d_xmin], [Ny - 1, Ny - 1 - d_y_xmin], linewidth=1, color='r', l

t = 100
nPLines = 40

for d in np.linspace(d_min, d_max, num=nPLines):
 # point (x1, y1) on projection line
 x1 = d*dx - t*nx
 y1 = d*dy - t*ny
 # point (x2, y1) on projection line
 x2 = d*dx + t*nx
 y2 = d*dy + t*ny
 ax_f31.plot([x1, x2], [Ny - 1 - y1, Ny - 1 - y2], linewidth=0.1, color='k')

In [33]:

ax_f31.grid(True)
ax_f31.set_xlabel('x')
ax_f31.set_ylabel('y')
ax_f31.legend()
ax_f31.set_title(f"projection-lines: @theta °deg: {theta_deg:8.3f}")

plot projection as a subplot
ax_f32 = fig3.add_subplot(2, 1, 2)
ax_f32.plot(dVec, projections, linewidth=1, color='b', linestyle='-')
ax_f32.grid(True)
ax_f32.set_xlabel('d')
ax_f32.set_ylabel('$P(d, \\theta)$')
ax_f32.set_title(f"projection : @$\\theta$: {theta_deg:8.3f} ° [deg]")

Text(0.5, 1.0, 'projection : @$\\theta$: 30.000 ° [deg]')

Computing a Sinogram

Out[33]:

A sinogram is the display of all projection values versus a set of values of and
values of angle .

From the image used previously the sinogram is computed and displayed as an image.

d_min = -2000
d_max = 2000
Nd = 400
dVec = np.linspace(d_min, d_max, Nd)

Ntheta = 400
thetaVec_deg = np.linspace(0, 179, Ntheta)

initalise matrix
sinogram = np.zeros((Ntheta, Nd), dtype=np.float64)

for nc, theta in enumerate(thetaVec_deg):
 # compute projection
 sinogram[nc, :] = isec.projectionMultiLine(dVec, theta, img, x_l, x_u, y_l, y_u

fig4 = plt.figure(4, figsize=[6, 6])
ax_f41 = fig4.add_subplot(1, 1, 1)
a = ax_f41.imshow(sinogram, cmap='hot')
a = ax_f41.imshow(sinogram, cmap='Greys')

ax_f41.grid(True)
ax_f41.set_xlabel('d')
ax_f41.set_ylabel('$\\theta \ [deg]$ ')
ax_f41.set_title(f"Sinogram")

yticks = [0, 100, 200, 300, 399]
ytickLabels = ['0', '45', '90', '135', '180']
ax_f41.set_yticks(yticks, ytickLabels)

xticks = [0, 100, 200, 300, 400]
xtickLabels = ['-2000', '-1000', '0', '1000', '2000'];
ax_f41.set_xticks(xticks, xtickLabels)

fig4.colorbar(a, ax=ax_f41, location='right');

Nd d Ntheta

θ

In [34]:

In [35]:

Why is it called a Sinogram ?
Consider all projection lines defined by which pass through a point at . Assume
that the value at this point has a value of and all other image points have zero
value (point image). Then all projections have a value of .

From the equation

the values of and are determined for a given angle .

For our purpose only the equation for is interesting. To gain more insight the equation is
rewritten:

d, θ xp, yp

f(xp, yp) v

v

(
xp

yp
) = d ⋅ (cos (θ)

sin (θ)
) + t ⋅ (−sin (θ)

cos (θ)
)

d t θ

d = xp ⋅ cos (θ) + yp ⋅ sin (θ)

t = −xp ⋅ sin (θ) + yp ⋅ cos (θ)

d

Using definitions

and

the equation for can now be written more compactly as:

and finally as:

Summary

A single point of a figure is transformed into a sinogram which is sinusoidal
dependent on angle . The phase constant phase depends on point coordinates with

Demonstration of a Sinogram of an Image with 3
Points
The sinogram of an image with only 3 non-zero pixels is computed with function
projectionMultiLine . The sinogram is displayed. It is composed of 3 sinusoids.

Additionally the sinogram of one of the 3 points is computed analytically. Apparently the
analytical result matches the computation with projectionMultiLine .

the rectangular region
Ny2 = 200
Nx2 = 200

physical dimension of region
x_l2 = 0

d = √x2
p + y2

p ⋅

⎛
⎜⎜
⎝

⋅ cos (θ) + ⋅ sin (θ)

⎞
⎟⎟
⎠

xp

√x2
p + y2

p

yp

√x2
p + y2

p

sin (ϕ) =
xp

√x2
p + y2

p

cos (ϕ) =
yp

√x2
p + y2

p

tan (ϕ) = =
sin (ϕ)

cos (ϕ)

xp

yp

d

d = √x2
p + y2

p ⋅ (sin (ϕ) ⋅ cos (θ) + cos (ϕ) ⋅ sin (θ))

d = √x2
p + y2

p ⋅ sin (θ + ϕ)

xp, yp f(x, y

θ ϕ

ϕ = arctan()xp

yp

In [36]:

x_u2 = Nx2 - 1
y_l2 = 0
y_u2 = Ny2 - 1

parameters for d-vector and angle vector
d_min2 = -300
d_max2 = 300
Nd2 = 600
dVec2 = np.linspace(d_min2, d_max2, Nd2)
Ntheta2 = 400
thetaVec2_deg = np.linspace(0, 179, Ntheta2)

image: 3 points
img2 = np.zeros((Ny2, Nx2), dtype=np.float64)
colum , row of point1 (p1)
nc_p1 = 50
nr_p1 = 50
colum , row of point2 (p2)
nc_p2 = 150
nr_p2 = 130
colum , row of point3 (p3)
nc_p3 = 100
nr_p3 = 180

img2[nr_p1, nc_p1] = 1
img2[nr_p2, nc_p2] = 1
img2[nr_p3, nc_p3] = 1

initalise matrix of sinogram
sinogram2 = np.zeros((Ntheta2, Nd2), dtype=np.float64)

for ncol, theta in enumerate(thetaVec2_deg):
 # compute projection
 sinogram2[ncol, :] = isec.projectionMultiLine(dVec2, theta, img2, x_l2, x_u2, y

compute sinogram for single point1
compute physical coordinates
x_p1 = nc_p1
y_p1 = Ny2 - 1 - nr_p1

R = math.sqrt(x_p1**2 + y_p1**2)
A = x_p1/R
B = y_p1/R

corresponding d values
da_p1 = R * (A * np.cos(np.pi * thetaVec2_deg/180) + B * np.sin(np.pi * thetaVec2_d

fig_width = 10
fig_height = 10
fig5 = plt.figure(5, figsize=[fig_width, fig_height])

ax_f51 = fig5.add_subplot(2, 1, 1)
ax_f51.imshow(img2, cmap='binary')
ax_f51.set_title(f"image with 3 points")

In [37]:

In [38]:

ax_f52 = fig5.add_subplot(2, 1, 2)
a = ax_f52.imshow(sinogram2, cmap='binary')

superimpose analytical computed sinogram of point1 with sinogram2
plot only every 10'th item to avoid masking sinogram2 (3 points)
-> excellent match ...
d_offset = 300
scale = Ntheta2/180
ax_f52.plot(da_p1[::10] + 300, scale * thetaVec2_deg[::10], linestyle='none', marke

ax_f52.grid(True)
ax_f52.set_xlabel('d')
ax_f52.set_ylabel('$\\theta \ [deg]$ ')
ax_f52.set_title(f"Sinogram of 3 points & analytical results")
ax_f52.legend()

yticks2 = [0, 100, 200, 300, 399]
ytickLabels2 = ['0', '45', '90', '135', '180']
ax_f52.set_yticks(yticks2, ytickLabels2)

xticks2 = [0, 150, 300, 450, 600]
xtickLabels2 = ['-300', '-150', '0', '150', '300'];
ax_f52.set_xticks(xticks2, xtickLabels2);

Other Examples
In these examples the sinograms are computed from grayscale images which exhibit some
structure (eg.: lines).

imgFile2 = "images/tree_dublin.png"
img2 = cv2.imread(imgFile2, cv2.IMREAD_REDUCED_GRAYSCALE_2)
Nx2 = img2.shape[1]
Ny2 = img2.shape[0]
print(f"size of image: {img2.size} ; shape of image: {img2.shape}")

Define boundaries of the rectangular region
x_l2 = 0 # left x
x_u2 = Nx2 - 1 # right x
y_l2 = 0 # bottom y
y_u2 = Ny2 - 1 # top y

d_min = -2000
d_max = 2000
Nd = 800
dVec = np.linspace(d_min, d_max, Nd)

Ntheta = 600
thetaVec_deg = np.linspace(0, 179, Ntheta)

initalise matrix
sinogram2 = np.zeros((Ntheta, Nd), dtype=np.float64)

for nc, theta in enumerate(thetaVec_deg):
 # compute projection
 sinogram2[nc, :] = isec.projectionMultiLine(dVec, theta, img2, x_l2, x_u2, y_l2

size of image: 480000 ; shape of image: (600, 800)

fig6 = plt.figure(6, figsize=[10, 10])
ax_f61 = fig6.add_subplot(2, 1, 1)

plot of image
ax_f61.imshow(img2, cmap='Greys_r')
ax_f61.set_title("Tree")

sinogram
ax_f62 = fig6.add_subplot(2, 1, 2)
a = ax_f62.imshow(sinogram2, cmap='hot')
ax_f62.grid(True)
ax_f62.set_xlabel('d')
ax_f62.set_ylabel('$\\theta \ [deg]$ ')
ax_f62.set_title("Sinogram / Tree")

yticks = [0, 100, 200, 300, 400, 500, 599]
ytickLabels = ['0', '30', '60', '90', '120', '150', '180']
ax_f62.set_yticks(yticks, ytickLabels)

xticks = [0, 100, 200, 300, 400, 500, 600, 700, 800]

In [39]:

In [40]:

xtickLabels = ['-2000', '-1500', '-1000', '-500', '0', '500', '1000', '1500', '2000
ax_f62.set_xticks(xticks, xtickLabels)

fig6.colorbar(a, ax=ax_f62, location='right');

imgFile3 = "images/lamp_dublin_1.png"
img3 = cv2.imread(imgFile3, cv2.IMREAD_REDUCED_GRAYSCALE_2)
Nx3 = img3.shape[1]
Ny3 = img3.shape[0]

In [47]:

print(f"size of image: {img3.size} ; shape of image: {img3.shape}")

Define boundaries of the rectangular region
x_l3 = 0 # left x
x_u3 = Nx3 - 1 # right x
y_l3 = 0 # bottom y
y_u3 = Ny3 - 1 # top y

d_min = -2000
d_max = 2000
Nd = 800
dVec = np.linspace(d_min, d_max, Nd)

Ntheta = 600
thetaVec_deg = np.linspace(0, 179, Ntheta)

initalise matrix
sinogram3 = np.zeros((Ntheta, Nd), dtype=np.float64)

for nc, theta in enumerate(thetaVec_deg):
 # compute projection
 sinogram3[nc, :] = isec.projectionMultiLine(dVec, theta, img3, x_l3, x_u3, y_l3

size of image: 480000 ; shape of image: (800, 600)

fig7 = plt.figure(7, figsize=[10, 10])
ax_f71 = fig7.add_subplot(2, 1, 1)

plot of image
ax_f71.imshow(img3, cmap='Greys_r')
ax_f71.set_title("Lamp")

sinogram
ax_f72 = fig7.add_subplot(2, 1, 2)
a = ax_f72.imshow(sinogram3, cmap='hot')

ax_f72.grid(True)
ax_f72.set_xlabel('d')
ax_f72.set_ylabel('$\\theta \ [deg]$ ')
ax_f72.set_title("Sinogram / Lamp")

yticks = [0, 100, 200, 300, 400, 500, 599]
ytickLabels = ['0', '30', '60', '90', '120', '150', '180']
ax_f72.set_yticks(yticks, ytickLabels)

xticks = [0, 100, 200, 300, 400, 500, 600, 700, 800]
xtickLabels = ['-2000', '-1500', '-1000', '-500', '0', '500', '1000', '1500', '2000
ax_f72.set_xticks(xticks, xtickLabels)

fig7.colorbar(a, ax=ax_f72, location='right');

In [48]:

 In []:

